Strings, Sequences, and Sets
Bridging Programming Collections with Mathematical Set Theory

CS 5001 & CS 5002 Integrated Course
September 23, 2025

1 Introduction: Collections in Programming and Mathematics

This week we explore the fundamental concept of collections from two complementary perspectives: programming sequences (strings,
lists, tuples) and mathematical sets. These concepts form the backbone of data organization in both computer science and discrete
mathematics.

1.1 Why Study Collections Together?
Collections are everywhere in computing and mathematics:
e Programming: Strings store text, lists manage data, tuples group related items
e Mathematics: Sets define fundamental relationships and operations
e Data Science: Understanding both perspectives enables powerful data analysis
e Algorithms: Many efficient algorithms rely on set operations and sequence manipulation

e Database Systems: SQL combines sequence operations with set theory

1.2 Learning Objectives
By the end of this class, you will be able to:

1. Manipulate strings and sequences using Python indexing and methods

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

2. Apply mathematical set theory concepts using Python’s set data type

3. Convert between different collection types based on problem requirements

4. Use set operations (union, intersection, difference) in both mathematical and programming contexts

5. Analyze the relationship between sequences (ordered) and sets (unordered, unique)

6. Apply collection concepts to solve real-world data problems

2 Strings as Sequences: The Foundation

2.1 String Fundamentals

A string is a sequence of characters, making it our first encounter with ordered collections. In Python, strings are immutable sequences

delimited by quotes.

String creation and basic properties

name = "northeastern"
city = "boston"
Strings are sequences - we can access individual elements

print (f"First character of {namel}: {name[0]}") # ’n’
print (f"Last character of {city}: {city[-113}") # ’n’
print (f"Length of {name}: {len(name)l}") # 12

String indexing follows zero-based numbering
word = "python"
print ("Index positions in ’python’:")
for i in range(len(word)):
print (f"Index {i}: ’{word([il}’")

;| # Negative indexing counts from the end
7|print (f"word [-1] = ’{word[-1]1}’") # ’n’

print (f"word [-2] ’{word[-2]2}"") # ’o’

Listing 1: Filename: string_indexing.py - Basic String Operations and Indexing

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

2.2 Mathematical Connection: Sequences vs Sets

While strings are sequences (ordered, allow duplicates), they relate to mathematical sets in important ways:

Property Sequences (Strings) | Sets

Order Matters Doesn’t matter
Duplicates Allowed Not allowed
Indexing Yes (by position) No

Membership | € (element at position) | € (element in collection)

A string with repeated characters
message = "hello world"

print (£"Original string: ’{messagel}’")
print (f"Length: {len(message)}")

Convert to set to see unique characters

unique_chars = set(message)

print (f"Unique characters: {unique_chars}")

print (£ "Number of unique characters: {len(unique_chars)}")

Convert back to sorted list to see the difference
sorted_unique = sorted(unique_chars)

sl print (f"Sorted unique characters: {sorted_uniquel}")

Demonstrate that order is lost in sets
print (£"Set from ’abc’: {set(’abc’)}")

7| print (£"Set from ’cba’: {set(’cba’)}") # Same set!

Listing 2: Filename: strings_to_sets.py - Converting Strings to Sets - Removing Duplicates

3 Mathematical Sets: Formal Foundations

3.1 Set Definition and Notation

A set is a collection of unique elements. In mathematics, we use curly braces { } to denote sets, and Python adopts the same notation.

w

©

-
~

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

3.1.1 Python Sets: A New Data Structure for List Users

Since you’ve been working with lists in Python, let’s understand how sets differ and why they’re useful. Think of a set as a special kind
of collection with two key rules:

1. No Duplicates: Each element can appear only once

2. No Order: Elements don’t have positions like list indices

You’re familiar with lists - they keep order and allow duplicates
my_list = [1, 2, 2, 3, 1, 4]
print (f"List: {my_list}")

print (f"Length: {len(my_list)}") # 6 elements

print (f"First element: {my_list [0]}") # Can access by index

Sets are different - no duplicates, no order

my_set = {1, 2, 2, 3, 1, 4} # Same elements as list

print (£"Set: {my_setl}") # Duplicates automatically removed
print (f"Length: {len(my_set)}") # Only 4 unique elements

Can’t access set elements by index - this would cause an error:

print (my_set [0]) # TypeError: ’set’ object is not subscriptable

But you can check if something is in the set (very fast!)

| print (£"Is 2 in the set? {2 in my_setl}") # True

print (£"Is 5 in the set? {5 in my_set}") # False

Converting between lists and sets

list_with_duplicates = [1, 1, 2, 2, 3, 3, 4, 4]

unique_set = set(list_with_duplicates) # Remove duplicates

back_to_list = list(unique_set) # Convert back (order may change)

print (£"Original list: {list_with_duplicatesl}")
print (f"As set (unique): {unique_setl}")

| print (f"Back to list: {back_to_listl}")

Listing 3: Filename: lists_vs_sets.py - From Lists to Sets - Understanding the Differences

When to use sets instead of lists:

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

e When you need to eliminate duplicates from data

e When you want to test membership quickly (“Is X in this collection?”)

e When you need to perform mathematical operations like union or intersection
e When the order of elements doesn’t matter for your problem

When to stick with lists:

e When you need to access elements by position (indexing)

e When the order of elements is important

e When you need to allow duplicate values

e When you need to modify elements in place

3.1.2 Basic Set Concepts
Let S = {Mon, Tue, Wed, Thu, Fri, Sat, Sun} be the set of days of the week.
¢ Element membership: Monday € S (Monday is an element of S)

e Non-membership: January ¢ S (January is not an element of S)

e Cardinality: |S| =7 (S has 7 elements)

Creating sets in Python

days_of_week = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"}
print (f"Days of week: {days_of_weekl}")

print (f"Cardinality: {len(days_of_week)}")

Element membership testing

print (£"’Mon’ in days_of_week: {’Mon’ in days_of_weekl}") # True

print (£"’January’ in days_of_week: {’January’ in days_of_week}")

Sets automatically remove duplicates
duplicate_set = {1, 2, 1, 2, 3}

False

12
13
14
15
16
17
18

19

1 T N

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

print (£"Set with duplicates {1, 2, 1, 2, 3} becomes: {duplicate_set}")

Cardinality example from the transcript
s1 = {1, 2, 1, 2} # Appears to have 4 elements
s2 = {1, 2%} # Clearly has 2 elements

print (£"S1 = {S1}, [S1| = {len(S1)}") # Actually has 2 elements!
print (£"S2 = {S2}, [|S2| = {len(S2)}") # Has 2 elements
print (£"S1 == S2: {S1 == S21}") # They are the same set!

Listing 4: Filename: python_sets_basic_operations.py - Python Sets - Basic Operations

3.2 Set Equality and Order Independence

Sets are equal if they contain exactly the same elements, regardless of order:

Order independence in sets
s2 = {1, 2%}

s3 = {2, 1}

print (£"S2 = {S2}")

print (£"S3 = {S31}")

print (£"S2 == S3: {S2 == S3}") # True - same elements

Compare with lists (sequences) where order matters

listl = [1, 2]

list2 = [2, 1]

print (£"List [1, 2] == [2, 1]: {listl == 1list2}") # False - different order

Converting between sets and lists

my_set = {3, 1, 4, 1, 5}

my_list = list(my_set)

print (£"Set {my_set} as list: {my_list}") # Order may vary
print (f"Sorted list: {sorted(my_set)l}") # Consistent ordering

Listing 5: Filename: set_equality_order.py - Set Equality - Order Doesn’t Matter

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

4 Common Sets and Set Builder Notation
4.1 Standard Mathematical Sets
Mathematics defines several important standard sets:

e Empty Set: () = {} or @ (no elements)
e Natural Numbers: N={0,1,2,3,4,...}

e Integers: Z=1{...,—2,-1,0,1,2,...}
e Positive Integers: ZT = {1,2,3,4,...} (excludes 0)
e Real Numbers: R (includes fractions, , etc.)

Empty set

empty_set = set() # Note: {} creates empty dict, not empty set
print (f"Empty set: {empty_set}")

print (f"Cardinality of empty set: {len(empty_set)l}")

Set containing empty set (different from empty set!)

set_with_empty = {frozenset()} # Contains one element: the empty set
print (£"Set containing empty set: {set_with_emptyl}")

print (f"Cardinality: {len(set_with_empty)}") # 1, not O!

Natural numbers (finite subset for demonstration)
natural_numbers = set(range(10)) # {0, 1, 2, ..., 9}
print (f"First 10 natural numbers: {natural_numbersl}")

5|# Positive integers (excluding 0)

positive_integers = set(range(1l, 11)) # {1, 2, 3, ..., 10}
print (f"First 10 positive integers: {positive_integersl}")

Integers including negatives
integers = set(range(-5, 6)) # {-5, -4, ..., 4, 5}
print (f"Integers from -5 to 5: {integersl}")

Listing 6: Filename: standard_sets_python.py - Standard Sets in Python

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

4.2 Set Builder Notation

Set builder notation allows us to define sets using conditions: S = {x | condition}

4.2.1 Mathematical Examples

Si={reN|z<3}={0,1,2,3} (1)
Sy={rxeN|z>3and x <5} ={3,4} (2)
Sy ={z® |z €{1,2,3}} = {1,4,9} (3)

S1 = {x in N | x <= 3}
281 = {x for x in range(10) if x <= 3}
slprint (£"S1 = {{x in N | x <= 3}} = {S1}")

5|# Don’t forget O is in natural numbers!
s print (£"Note: O is included in natural numbers")

s|l# S2 = {x in N | x >= 3 and x < 5}

S2 = {x for x in range(10) if x >= 3 and x < 5}
print(£"S2 = {{x in N | x >= 3 and x < 5}} = {S2}")

o|# S3 = {x**2 | x in {1, 2, 3}}
S3 = {x**2 for x in {1, 2, 3}}

14| print (£"S3 = {{x**2 | x in {{1, 2, 3}}}} = {S3}")

;| # More complex example: even squares less than 50
7| even_squares = {x**2 for x in range(l, 10) if (x**2) % 2 == 0 and x**2 < 50}
print (f"Even squares < 50: {even_squaresl}")

String example: vowels in a word

word = "northeastern"
vowels_in_word = {char for char in word if char in ’aeiou’}
23 print (f"Vowels in ’{word}’: {vowels_in_wordl}")

Listing 7: Filename: set_builder_notation.py - Set Builder Notation in Python - List Comprehensions

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

5 Sequences and Mutability: Lists vs Strings

5.1 Immutable Sequences: Strings and Tuples

Strings are immutable - once created, their contents cannot be changed. This has important implications for how we work with them.

Strings are immutable
text = "hello"
print (f"Original text: {text}")

This creates a NEW string, doesn’t modify the original
new_text = text.upper ()
print (f"After upper (): original = ’{text}’, new = ’{new_textl}’")

Trying to modify a string character raises an error
try:

text [0] = *H’ # This will fail!
except TypeError as e:

print (f"Error: {el}")

String concatenation creates new strings

| greeting = "Hello"
name = "World"
message = greeting + " " + name # Creates new string

print (f"Concatenated: ’{messagel}’")

Tuples are also immutable sequences

weekdays = ("Mon", "Tue", "Wed", "Thu", "Fri")
print (f"Weekdays tuple: {weekdaysl}")

print (f"First weekday: {weekdays[0]}")

;| # Can’t modify tuple elements

try:

weekdays [2] = "Humpday" # This will fail!
except TypeError as e:

print (f"Error: {el}")

Listing 8: Filename: string_immutability.py - String Immutability and Its Implications

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

5.2 Mutable Sequences: Lists

Lists are mutable sequences that can be modified after creation, making them very different from sets in behavior.

Lists are mutable sequences
data = [13, 15, -4, 31, 5, 6, 19]
print (£"Original list: {datal}")

We can modify individual elements

i|data [0] = 42

print (f"After modifying index O0: {datal}")

Lists preserve order and allow duplicates
numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5]

print (f"List with duplicates: {numbersl}")
print (f"Length: {len(numbers)}")

Convert to set to remove duplicates
unique_numbers = set(numbers)

| print (£"As set (unique): {unique_numbersl}")
7l print (£"Unique count: {len(unique_numbers)l}")

Convert back to list (order may change)
back_to_list = list(unique_numbers)
print (f"Back to list: {back_to_list}")

Sorted version for consistent ordering
sorted_unique = sorted(unique_numbers)
print (f"Sorted unique: {sorted_uniquel}")

Listing 9: Filename: list_mutability_sets.py - List Mutability and Comparison with Sets

6 Subsets and Set Relationships

6.1 Subset Definition and Notation

A is a subset of B (written A C B) if and only if every element of A is also an element of B.

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

6.1.1 Mathematical Examples

Let S ={1,2,3}, A= {2}, B={1,2}, and C = {1,2,3}.
e AC S because 2 € S
e BC Shbecausel € Sand2¢ S

e C C S because 1,2,3 € S (in fact, C = S)

Venn Diagram Explanation: The smaller circle A = {2} is completely contained within the larger circle S = {1, 2, 3}, illustrating
that A C S.

S N O

~

w0

Define our sets
s = {1, 2, 3%}

A = {2}

B = {1, 2}

c = {1, 2, 3%}
print (£"s = {S}")

print (£"A = {A}")
ol print (£"B = {B}")
print (£"C {Cr")

2|# Test subset relationships

print (f"A subset S: {A.issubset(S)}") # True
print (£"B subset S: {B.issubset(S)}") # True
print (£"C subset S: {C.issubset(S)}") # True

Proper vs improper subsets

11

[un
= O ©

NN NN NN N N =
S s W N ¢

RS

N
3

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

{A < s}
{Cc < s}

print (f"A proper subset S:
print (£"C proper subset S:
print (£f"C = S: {C == S}")
Every set is a subset of itself

print (£"S subset S: {S.issubset(S)}")

Empty set is subset of every set
empty = set ()

print (f"empty subset S:
print (f"empty subset A:

True (proper
False (equal

True

{empty.issubset (S)}")
{empty.issubset (A)}")

subset)
sets)

True (same set)

True

True

Listing 10: Filename: subset_relationships.py - Subset Relationships in Python

6.2 Comparing Subset Notation with Numerical Inequalities

The subset relationships parallel numerical inequalities:

Numbers | Sets Meaning
a<b A C B | Proper (strict) relationship
a<b ACB Allows equality
a=1b A=10B Equality

7 Power Sets: All Possible Subsets

7.1 The Ice Cream Shop Example

Imagine visiting an ice cream shop with flavors {C,V, M} (Chocolate, Vanilla, Mocha). What are your options?

e Choose no flavors: {}

e Choose one flavor: {C}, {V}, {M}

e Choose two flavors: {C,V'}, {C, M}, {V, M}
e Choose all flavors: {C,V, M}

12

Class 02 - September 23, 2025

The power set P(S) is the set of all possible subsets of S.

P{C,V,M}) = {3 ACHAVEAM S} AC, VEA{C, M}, {V, M}, {C,V, M}}

7.2 Power Set Cardinality

For a set with n elements, its power set has 2" elements: |P(S)| = 2/
Let’s explore this concept through two complementary examples.

7.2.1 Basic Power Set Generation

from itertools import combinations

def power_set(s):
"""Generate all subsets of a set"""
s = list(s) # Convert to list for indexing
power_set_list = []

Generate all possible combinations of all lengths
for r in range(len(s) + 1):
for combo in combinations (s, r):
power_set_list.append(set (combo))

return power_set_list
Ice cream flavors example
flavors = {’Chocolate’, ’Vanilla’, ’Mocha’}

power_flavors = power_set (flavors)

print (£"Original set of flavors: {flavors}")

print (f"Power set P(flavors) - all possible ice cream combinations:")

for i, subset in enumerate(power_flavors):
if len(subset) == 0:
print (£f" {i}: {subset} (no ice cream)")
else:
print (£" {i}: {subsetl}")

13

CS 5001/5002 - Strings, Sequences & Sets

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

print (f"\nCardinality verification:")

olprint (£" |S| = {len(flavors)} flavors")

sol print (£" [P(S)| = {len(power_flavors)} total combinations")
print (£" Formula: 2°|S| = 2°{len(flavors)} = {2*xlen(flavors)}")
print (f" Formula verified: {len(power_flavors) == 2x*len(flavors)l}")

Listing 11: Filename: basic_power_sets.py - Basic Power Set Generation

7.2.2 Binary Representation Connection

The connection between power sets and binary numbers reveals why |P(S)| = 2/5!:

def binary_to_subset(binary_str, elements):
"""Convert a binary string to a subset based on element positions"""
subset = set ()
for i, bit in enumerate(binary_str):
if bit == ’1’ and i < len(elements):
subset.add(elements[i])
return subset

ol # Binary representation connection with 3 elements
elements = [’C’, ’V’, ’M’] # Chocolate, Vanilla, Mocha (abbreviated)
n = len(elements)

print (f"Binary Representation Connection")
print (f"Elements: {elementsl}")
print (f"Each subset corresponds to a {n}-bit binary number:")

| print ()
for i in range(2**n): # 2°n possibilities
binary = format(i, £’0{n}b’) # n-bit binary representation
subset = binary_to_subset(binary, elements)

print (£f" A{binary} -> {subsetl}")

print (£"\nTotal subsets: {2**n} = 2°{nl}")

25|# Verify the formula with different sized sets

14

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

| print (£"\nFormula Verification Across Different Set Sizes:")

print (£"{’Set Size’:<10} {’Actual |P(S)|’:<15} {’Expected 2°n’:<15} {’Verified’:<10}")
print ("-" * 55)

for size in range (1, 6):

actual_count = 2 ** size # We know this mathematically
expected_count = 2 ** size
verified = actual_count == expected_count

print (£"{size:<10} {actual_count:<15} {expected_count:<15} {’YES’ if verified else ’NO’:<10}")

print (£"\nKey Insight: Every subset can be represented as a binary number!")
print (£" - Bit position i: include element i if bit = 1, exclude if bit = 0")

print (£" - This is why |P(S)| = 27[S| for any finite set S")

Listing 12: Filename: binary_power_sets.py - Binary Representation and Power Set Formula

8 Set Operations: Building Complex Relationships

8.1 Fundamental Set Operations

Set operations allow us to combine and manipulate sets in powerful ways. Each operation has both mathematical notation and Python

implementation.

8.1.1 Union (AU B)

The union contains all elements that are in either set (or both).

AUB={x|z€ Aor x € B}

8.1.2 Intersection (AN B)

The intersection contains only elements that are in both sets.

ANB={z |z € Aand z € B}

15

Class 02 - September 23, 2025

8.1.3 Difference (A— B or A\ B)

The difference contains elements in the first set but not the second.
A—B={z|z€ Aand z ¢ B}

8.1.4 Complement (A or A°)

The complement contains all elements in the universe that are not in the set.

A={zecU|z ¢ A}

Define example sets

= {1, 2, 3, 4}

= {3, 4, 5, 6}

= {1, 2, 3, 4, 5, 6, 7, 8} # Universe set

QW=

print (£"A {A}™)

print (£"B = {B}")

print (£"Universe U = {U}")
print ()

Union: A union B
union = A | B # or A.union(B)
print (f"A union B = {union}")

Intersection: A intersect B
intersection = A & B # or A.intersection(B)
print (f"A intersect B = {intersection}")

Difference: A - B
difference = A - B # or A.difference(B)
print (f"A - B = {differencel}")

Symmetric difference: A XOR B (elements in A or B, but not both)

sym_diff = A ° B # or A.symmetric_difference (B)
print (f"A X0R B = {sym_diffl}")

16

CS 5001/5002 - Strings, Sequences & Sets

@

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

Complement: complement of A (with respect to universe U)

complement_A = U - A

print (f"complement of A in U = {complement_A}")

Verify De Morgan’s laws

not (A union B) = (not A) intersect (not B)

left_side = U - (A | B)

right_side = (U - A) & (U - B)

print (£"\nDe Morgan’s Law verification:")

print (f"not (A union B) = {left_sidel}")

print (£" (not A) intersect (not B) = {right_sidel}")
print (f"Equal? {left_side == right_sidel}")

Listing 13: Filename: set_operations.py - Set Operations in Python

8.2 Venn Diagrams and Visual Representation

Venn diagrams help visualize set relationships and operations.

8.2.1 Intersection (AN B)

Intersection: The shaded region shows elements that belong to both A and B.

17

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

8.2.2 Union (AU B)

Union: The shaded region shows all elements that belong to either A or B (or both).

8.2.3 Difference (A — B)

Difference: The shaded region shows elements that are in A but not in B.

8.2.4 Complement (A)

Complement: The shaded region shows all elements in the universe U that are not in A. The rectangle represents the universe U.

18

Class 02 - September 23, 2025

9 Advanced Applications: Combining Sequences and Sets

9.1 Text Analysis with Sets and Sequences

Let’s apply both sequence and set concepts to analyze text data.

def analyze_text (text):
"""Comprehensive text analysis using both sequences and sets"""
Sequence analysis
print (£"Text: ’{textl}’")
print (f"Length (with spaces): {len(text)}")
print (f"Character at position O0: ’{text[0]}’")
print (f"Character at position -1: ’{text[-1]}’")

Convert to lowercase for analysis
text_lower = text.lower ()

Set analysis - unique characters

unique_chars = set(text_lower)

print (f"Unique characters: {sorted(unique_chars)l}")
print (£ "Number of unique characters: {len(unique_chars)l}")

Vowels and consonants
vowels = set(’aeiou’)
consonants = set(’bcdfghjklmnpqrstvwxyz’)

text_vowels = unique_chars & vowels
text_consonants = unique_chars & consonants

print (f"Vowels in text: {sorted(text_vowels)}")
print (f"Consonants in text: {sorted(text_consonants)l}")

Character frequency (using sequences)
char_freq = {}
for char in text_lower:
if char.isalpha(): # Only count letters
char_freq[char] char_freq.get(char, 0) + 1

19

CS 5001/5002 - Strings, Sequences & Sets

Class 02 - September 23, 2025

print (f"Character frequencies: {dict(sorted(char_freq.items()))}")

Most common characters

if char_freq:
max_freq = max(char_freq.values())
most_common = {char for char, freq in char_freq.items () if freq == max_freq}
print (f"Most frequent character(s): {most_common} (appears {max_freql} times)")

Analyze different texts
texts = [

for

"Hello World",
"Northeastern University",
"Computer Science and Mathematics"

text in texts:
print ("=" x 50)
analyze_text (text)
print ()

9.2

Listing 14: Filename: text_analysis.py - Text Analysis - Combining Strings and Sets

Data Deduplication and Filtering

A common real-world application combining sequences and sets:

def

process_student_data():
"""Demonstrate data processing using sequences and sets"""

Student enrollment data (sequences with possible duplicates)
cs5001_students = ["Alice", "Bob", "Charlie", "Diana", "Alice", "Eve"]
cs5002_students = ["Bob", "Charlie", "Frank", "Grace", "Alice"]

print ("Original enrollment lists (sequences):")

print (£"CS 5001: {cs5001_studentsl}")

print (£"CS 5002: {cs5002_studentsl}")

Convert to sets for analysis

20

CS 5001/5002 - Strings, Sequences & Sets

39

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

cs5001_set set (cs5001_students)
cs5002_set = set(cs5002_students)

print (£"\nUnique students per class (sets):")
print (£"CS 5001: {cs5001_set}")
print (£"CS 5002: {cs5002_set}")

Set operations for analysis
both_classes = cs5001_set & cs5002_set
only_5001 = cs5001_set - cs5002_set
only_5002 = cs5002_set - cs5001_set
all_students = cs5001_set | cs5002_set

print (f"\nEnrollment analysis:")

print (f"Taking both classes: {both_classesl}")
print (£"0nly CS 5001: {only_50013}")

print (£"0nly CS 5002: {only_5002}")

print (£"All students: {all_students}")

Statistics

print (£"\nStatistics:")

print (f"Total unique students: {len(all_students)l}")

print (£"Students in both classes: {len(both_classes)l}")

print (f"Percentage taking both: {len(both_classes)/len(all_students)*100:.1£}%")

Convert back to sorted lists for reporting

print (f"\nSorted lists for reports:")

print (£"All students (alphabetical): {sorted(all_students)l}")
print (f"Both classes (alphabetical): {sorted(both_classes)l}")

process_student_data ()

Listing 15: Filename: data_processing.py - Data Processing - Sequences to Sets and Back

21

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

10 Complex Set Operations: Step-by-Step Analysis

10.1 Compound Operations with Venn Diagrams
Let’s analyze complex expressions step by step: (AU B) — C and (ANC)UB

10.1.1 Expression 1: (AUB)—-C
Step 1: First, find AU B (union of A and B)

Step 2: Then subtract C from (AU B) - elements in A or B but not in C

Result: Elements in A or B but not in C.

10.1.2 Expression 2: (ANC)UB
Step 1: Find AN C (intersection of A and C)

22

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

Step 2: Find B (complement of B) and take union with (4N C)

U

Result: Elements in both A and C, plus all elements not in B.

0N

def analyze_complex_operations():
"""Step-by-step analysis of complex set operations"""

Define our sets

A= {1, 2, 3, 4}

B = {3, 4, 5, 6}

c = {2, 4, 6, 8}

U set (range (1, 11)) # Universe: {1, 2, 3, ..., 10}

print ("Given sets:")
print (£"A = {A}")

print (£"B = {B}")
print (£"C = {C}")
print (£"U = {U}")
print ()

23

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

Expression 1: (A union B) - C

print ("Expression 1: (A union B) - C")
print ("Step 1: Calculate A union B")
union_AB = A | B

print (f" A union B = {union_AB}")

print ("Step 2: Calculate (A union B) - C")

resultl = union_AB - C
print (f" (A union B) - C = {resultil}")
print ()

Expression 2: (A intersect C) union complement (B)

print ("Expression 2: (A intersect C) union complement (B)")
print ("Step 1: Calculate A intersect C")

intersection_AC = A & C

print (f" A intersect C = {intersection_ACl}")

print ("Step 2: Calculate complement (B)")
complement_B = U - B
print (f" complement(B) = {complement_B}")

print ("Step 3: Calculate (A intersect C) union complement(B)")

result2 = intersection_AC | complement_B
print (f" (A intersect C) union complement(B) = {result2}")
print ()

Verify using direct Python evaluation

print ("Verification using direct Python evaluation:")
directl = (A | B) - C

direct2 = (A & C) | (U - B)

print (£"(A | B) - C = {directl1}")
print (£"(A & C) | (U - B) = {direct2}")
print (f"Results match: {resultl == directl and result2 == direct2}")

analyze_complex_operations ()

Listing 16: Filename: complex_set_operations.py - Complex Set Operations - Step by Step

24

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

11 Practical Applications: Real-World Problem Solving

11.1 Database-Style Queries Using Sets

Sets are fundamental to database operations and data analysis:

def database_operations():

"""Simulate database operations using sets"""

Employee database simulation
employees = {
"engineering": {"Alice", "Bob",
"marketing": {"Eve", "Frank",
"sales": {"Bob", "Grace",
"management": {"Alice",

"Alice",
”Henry",
"Frank",

3

print ("Employee Database:")

for dept, people in employees.items ():
print (f" {dept}: {peoplel}")

print ()

Query 1: Who works in multiple departments?

all_employees = set ()

for dept_employees in employees.values():

all_employees |= dept_employees

multi_dept = set()

for employee in all_employees:
dept_count =

"Charlie",

"Diana"},

"Grace"},
”Iris”},
”Henry”}

sum (1l for dept_employees in employees.values ()

if employee in dept_employees)

if dept_count > 1:
multi_dept.add(employee)

print (f"Employees in multiple departments:
Query 2: Engineering OR Marketing (union)

eng_or_marketing = employees["engineering"] |
print (f"Engineering OR Marketing:

{multi_dept}")

employees ["marketing"]

{eng_or_marketingl}")

25

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

Query 3: Engineering AND Marketing (intersection)
eng_and_marketing = employees["engineering"] & employees["marketing"]
print (f"Engineering AND Marketing: {eng_and_marketingl}")

Query 4: In Engineering but NOT in Management
eng_not_mgmt = employees["engineering"] - employees["management"]
print (f"Engineering but not Management: {eng_not_mgmtl}")

Query 5: Department-specific analysis
print (f"\nDepartment sizes:")
for dept, people in employees.items():
print (£f" {dept}: {len(people)} employees")

Query 6: Find employees unique to each department
print (f"\nEmployees unique to each department:")
for dept, people in employees.items():

others = set ()

for other_dept, other_people in employees.items():

if other_dept != dept:
others |= other_people
unique_to_dept = people - others
print (£f" {dept} only: {unique_to_deptl}")

database_operations ()

Listing 17: Filename: database_operations.py - Database Operations Using Set Theory

11.2 Text Processing: Word Analysis

Combining string manipulation with set operations for natural language processing:

def analyze_documents ():
"""Analyze text documents using sets and sequences"""
documents = [
"Python is a powerful programming language for data science",
"Data science requires strong programming and mathematical skills",

26

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

"Mathematical foundations are essential for computer science"

print ("Document Analysis:")
prlnt (" ================ ")

Process each document

doc_words = []

for i, doc in enumerate (documents):
Convert to lowercase and split
words = doc.lower ().replace(",", "").replace(".", "").split ()
doc_words . append (set (words)) # Convert to set for analysis

into words

print (f"Document {i+1}: ’{doc}’")

print (f" Words: {sorted(words)}")
print (£" Unique words: {len(doc_words[i])1}")
print O)

Set operations on documents
print ("Cross-Document Analysis:")
prlnt (" ======================= ")

Words in all documents (intersection)

common_words = doc_words [0]

for word_set in doc_words[1:]:
common_words &= word_set

print (f"Words in ALL documents: {sorted(common_words)l}")

Words in any document (union)

all_words = set ()

for word_set in doc_words:
all_words |= word_set

print (£"ALL unique words:

print (f"Total vocabulary size:

{sorted(all_words)}")
{len(all_words)}")

Words unique to each document

print (f"\nWords unique to each document:")

for i, word_set in enumerate (doc_words):
others = set ()

27

Class 02 - September 23, 2025

CS 5001/5002 - Strings, Sequences & Sets

for j, other_set in enumerate (doc_words):
if i 1= j:
others |= other_set
unique = word_set - others
print (f" Document {i+1} only: {sorted(unique)}")

Find documents sharing specific words
target_words {"programming", "science", "data"}
print (f"\nDocuments containing each target word:")
for word in target_words:

containing_docs (]

for i, word_set in enumerate (doc_words):

if word in word_set:
containing_docs.append (i + 1)
’{word}’: Documents {containing_docsl}")

print (£"

analyze_documents ()

Listing 18: Filename: nlp_analysis.py - Natural Language Processing with Sets and Sequences

12 Summary and Key Takeaways

12.1 Connections Between Domains

Concept Programming (CS 5001) Mathematics (CS 5002)
Collections Strings, Lists, Tuples Sets, Sequences

Order Sequences preserve order Sets ignore order

Uniqueness | Lists allow duplicates Sets enforce uniqueness
Operations String methods, List methods | Union, Intersection, Complement
Membership | in operator € notation

Size len() function Cardinality |S|

Empty (] or set() 0 or &

12.2 Best Practices
1. Choose the right data structure:

28

Class 02 - September 23, 2025 CS 5001/5002 - Strings, Sequences & Sets

Use strings for text that won’t change

Use lists when order matters and duplicates are allowed

Use sets when uniqueness is important and order doesn’t matter

Use tuples for immutable sequences

2. Leverage set operations:

Use intersection (&) to find common elements

Use union (|) to combine collections

Use difference (-) to find unique elements

e Use symmetric difference (") for ”either but not both”
3. Convert between types strategically:

e Convert to set to remove duplicates: 1ist(set(my_list))
e Convert to list to sort: sorted(my_set)

e Use list comprehensions for filtering: [x for x in data if condition]
12.3 Looking Ahead
These fundamental concepts will appear throughout both courses:

e CS 5001: Advanced data structures, algorithms, file processing, web scraping
e CS 5002: Relations, functions, graph theory, combinatorics

e Integration: Database design, algorithm analysis, data science applications

Understanding both the programming implementation and mathematical foundation of collections gives you powerful tools for solving
complex problems in computer science and beyond.

29

